
BA 706 - Applied Analytic Modelling

Predicting Bank Application Fraud

Group 5

Rakeen Ahmed - 301307050

Faiza Zahin - 301318801

Raghav Gupta - 301272406

Drashti Lakhani - 301241918

2

Table of Contents

Table of Contents 2

Introduction and Objective 4

Data Setup and Exploration 4
Procedure 4
Variables discussion 5

Target variable 5
Rejected variable 6
Binary variable 6

Missing Data 6
Skewed Data 7
StatExplore 8
Data Oversampling 9
Data Partitioning: 50:50 11

Decision Trees 13
Maximal Tree 14
ASE Tree 16
Misclassification Tree: 17
ASE 3-Branch Tree 18
Model Comparison: Trees 20

Data Manipulation 21

Regressions 27
Full Regression 28
Forward Regression 29
Backward Regression 30
Stepwise regression 32
Polynomial regression 34

Neural Networks 35
Decision Trees Neural Networks 36

ASE Neural Network 36
Misclassification Neural Network 37
ASE 3B Neural Network 38
Summary: Decision Tree NN 39

Forward Regression Neural Networks 39
3 Hidden Unit Neural Network (100 iterations) 40
4 Hidden Unit Neural Network (100 iterations) 41

3

5 Hidden Unit Neural Network (100 iterations) 42
6 Hidden Unit Neural Network (100 iterations) 43

Polynomial Regression Neural Networks 44
3 Hidden Unit Neural Network (100 iterations) 45
4 Hidden Unit Neural Network (100 iterations) 46
5 Hidden Unit Neural Network (100 iterations) 48
6 Hidden Unit Neural Network (100 iterations) 48

Data Modification Neural Network 50
Impute Neural Network 50
Cap and Floor Neural Network 51
Transform Neural Network 52
Recode Class Neural Network 53

Other Neural Networks 54

Model Comparison 54

Recommendations and Key Findings 57
Models to Use 57
Key Features 57
Features to monitor 58

Conclusion 58

References 60

Appendix 61

4

Introduction and Objective
New Account Fraud is a major problem in the banking industry, and is one of the most common
types of bank account fraud, accounting for 23% of all bank account frauds. It involves the
creation of a new bank account using false or stolen personal information by the fraudster,
which is then onboarded by the bank as a legitimate account. The account can then be used for
various fraudulent activities such as money laundering, illegal transactions, credit card fraud,
etc. For our project, the dataset obtained from Kaggle.com contains 1 million instances of
synthetic bank account opening applications with 31 variables and a binary label indicating
whether they were deemed fraudulent.

The objective of our project is to understand the key features that can predict fraudulent account
applications from the dataset, and train machine learning models that can accurately predict
fraudulent applications so that such applications can be flagged and investigated before they
are approved by the bank. For this project, we will be training three types of models - Decision
Trees, Logistic Regressions, and Neural Networks. The performance criteria for evaluating the
accuracy of models will be Average Squared Error.

Data Setup and Exploration

Procedure

Kaggle Dataset->SAS Enterprise Miner ->File Import Node-> Import .csv file from H: Drive

5

Variables discussion

Target variable
We have chosen fraud_bool as our target variable as we are predicting bank fraud cases. It is
of Binary level i.e.1 & 0, where 1 implies fraud.

6

Rejected variable
We have chosen prev_address_months_count as our rejected variable because all the
missing values in this variable have been modified as -1 instead of 0. It is our redundant
variable.

Binary variable
For our model, we have chosen some of our variables as binary such as device_fraud_count,
email_is_free, phone_home_valid, phone_mobile_valid, has_other_cards, foreign_request,
keep_alive_session.

Missing Data

The dataset chosen from Kaggle had some disclaimers. One of which was, all missing values
across variables have been modified as -1 instead of 0. Complications arose from this status
quo as SAS Enterprise Miner needed to recognize -1 as genuinely missing. Besides that, -1
would have affected all models.

The screenshot below is illustrating one of the variables, prev_address_months_count. In the
histogram we can see, that -1 has the highest frequency.

Therefore, as step 2 of our project, we added a Replacement node, to identify -1 as 0. In short,
place the missings. The screenshot below shows all the successfully replaced values. For
example- bank_months_count had 253635 rows replaced.

7

Since the values for days_since_request variables were concentrated mostly around 0 to 1, we
created a flag for this variable using the replacement node. We set a lower limit of 0.99999 and
an upper limit of 1.00001.

Skewed Data

While also exploring the dataset, preliminary perusal showed skewness in multiple variables.
The cut-off for skew for this project has been set at -1 to 1.

Upon further inquiry, all the statistics for the interval inputs were brought to light. As per the table
below, the variables days_since_request, bank_branch_count_8w, session_length_in_minutes,
device_distinct, etc. are heavily skewed. For now, we have only treated days_since_request
using the flag in the replacement node. But, more will be done in the latter parts of the project.

8

StatExplore

9

The screenshot below depicts the results of all the variables post the replacement node via a
StatExplore node.

The first few variables starting with the prefix REP, refer to the ones which have been modified
in the previous step, the replacement node. We used the node to replace missing values and
flag values. For example, REP_device_distinct_emails_8w has 359 missing values in the
dataset and 999641 non-missings. Similarly, all the variables which have undergone
replacement have their missing and non-missing listed in the 3rd and 4th columns with the REP
prefixes.

We can refer to the means and standard deviations of all the inputs from the first 2 columns. For
instance, the average credit risk score for all the clients in the bank is around 130.98, with a
standard deviation of 69.6 bps on both the positive and negative scales.

Minimum, Median, and Maximum values give an overall view of the data. The minimum or
youngest customer is 10 years old, the median is 30 years old and the maximum is 90 years old
at this bank. Lastly, we can also view the skew for each input in this output panel too.

Data Oversampling

The dataset we are working with has Bank Account Fraud data points. Fraud is usually a rare
event that is denoted by binary variables 0 and 1. In our dataset, the percentage of fraud is 1%,
which is extremely low for data testing.

As depicted in the screenshot below, the accounts of ‘No Fraud’ severely outweigh the ‘Fraud’
events.

10

To bring a balance to the data, we are oversampling fraud events. We decided to keep a 50:50
ratio of 0 vs. 1. Using the Sample node in SAS, we adjusted the percentage by 100% and
equaled it in the stratified criterion. The properties panel screenshot is below:

The screenshot below refers to the post-run results on the ‘Sample’ node. The initial dataset
had almost 99% of non-fraud events. Whereas, after the successful run of the Sample node, the
new percentages are 50:50 for fraud_bool(0 vs. 1).

11

Data Partitioning: 50:50

Data partition is a procedure for best model prediction. We have split our data into two parts i.e.,
a 50:50 ratio for training and validation. Training data is used to fit each model and the validation
model is a random sample that is used for model selection.

For data partition, we drag the data partition node from the sample tab and connect it to our
data set, and as depicted in our screenshot we changed the properties of training and validation
data set allocation to 50% in both.

12

After making the necessary changes we ran our data partition node and viewed the results.
As per the results that can be seen in our screenshot, training data has been allocated 50:50 to
0 vs 1 and their frequency count is 5514 for each. Validation data has also been allocated 50:50
and their frequency count is 5515 for each.

13

Decision Trees

After partitioning our data, we continue with the data analysis and one of the most effective
methods for predictive modeling is decision trees. A split search strategy is used to choose the
inputs, and it eliminates any variables with p-values less than 0.7. Pruning makes decision trees
less complex by limiting the variables in the final tree to those with p values greater than or
equal to 1. The Root Node is the first split, while the Leaf Nodes are the last splits.

We have implemented four different decision trees for this project:
● Maximal Tree
● ASE Tree
● Misclassification Tree
● ASE 3B Tree

The screenshot of the Decision Trees is shown below.

14

Maximal Tree

Out of four different trees, we performed the Maximal Tree as our first decision tree. This tree is
the largest statistically. This model has 55 leaves.

The root node is split using ‘housing_status’, followed by ‘device_os’. The 3rd splitting variable
has changed with respect to each of the branches either to ‘has_other_cards’ or ‘replacement:
current_address’. Screenshot below.

From the variables split, we see that more than 60% of the count has swayed to a
housing_status besides BA. BA has a fraudulent validation rate of 77.27% compared to non-BA
where fraudulent validation is 33.78%. Following BA, those with MAC, WINDOWS have the

15

higher fraud validation rate of 85.55%. The 3rd split on this has_other cards, and those who
have shown 0 or missing cards have a validation rate of 87.37%.

Having mentioned one area of the maximal tree, the ASE derived from the maximal tree was
0.173235 which is the highest among all the trees. The misclassification rate was 0.222615 for
the maximal tree. The screenshot below shows the result of maximal tree.

16

ASE Tree

As expected the first 3 splits and validation rates remain the same, as optimal trees are
produced by pruning branches from the bottom. We can refer to the tree map in the picture
below. It is less dense than maximal. ASE tree contains 40 leaves which are lower than the
maximal tree.
Given the reduction in the number of leaves, ASE has pruned the tree to its best. The ASE
obtained from the ASE tree was 0.170573, slightly lower than the Maximal Tree.

17

Misclassification Tree:
This model contains 25 leaves altogether, which is much fewer than the preceding decision
trees when compared to their total number of leaves. However, the misclassification tree's ASE
is the highest of all the trees at 0.175272. A screenshot of the maximal tree's outcome is shown
below.

Even though pruning is an efficient way to reduce error rates, it can also do the opposite. Such
is this tree, where the tree has been pruned to an extent that the error rates are rising. So far,
this is the worst decision tree model.

18

ASE 3-Branch Tree

After exploring the 3 different trees, a 3-branch tree was deemed fit. However, due to the default
function of SAS Enterprise Miner, we were getting 2 branches as main splits from the ‘Root
Node’.

While deciding on the model to apply a 3-branch on, ASE 2-Branch Decision Tree proved best.
The ASE derived from ASE Tree (2B) was 0.170573 which is the lowest among all the trees. So
we created a 4th tree using ASE Tree (2B) as the base, only with 3 branches this time.
Screenshot:

19

The number of leaves for this 3-branch tree is 52 and the ASE is 0.169517 which is the best so
far and has been the expected result.

The splits on this tree give more insight than the trees above due to its 3 branch property. In
comparison to the maximal tree BA fraudulent validation rate remains at 77.27%. However, we
start to see changes in the next splits. Previously, MAC, WINDOWS & Missing split on BA
derived an 85.55% fraudulent validation rate, now it has been split into 2 groups. Those using
WINDOWS or Missing devices have a fraudulent validation rate of 86.22%. has_other _cards
which are denoted as 0 or Missing have a fraudulent validation rate of 88.04% compared to
maximal tree’s 87.37%.

20

However, we further fine-tune our Trees with Neural Network nodes which will be covered in the
Neural Network Section.

Model Comparison: Trees

Since we have created a few decision trees, we attached a model comparison node to all the
trees. This node gives a concise snapshot of all the relevant statistics. In short, ASE with 3
branches is the Best Optimal Tree with 0.169517, followed by ASE 2-branch Tree with
0.170573. The Maximal Tree places 3rd with 0.173235, and the least reliable tree is
Misclassification Tree with 0.175272. Screenshot below:

21

Data Manipulation

We have followed the following processes to refine our data:

1. Impute Missing Values-After partitioning the data 50:50, we were still left with significant
missing values. When it comes to regression, we could have left the missings untreated,
but we preferred to work with a treated dataset. As per the screenshot below, we had up
to 80% data missing in some cases.

The customizations we used for the impute node are given below:

22

After running the impute node, new variations of inputs were created with the prefix IMP short
for impute. From the picture below, M_REP_banks_months_count had 31.184% missing, which
is now 0% as per the new imputed version(IMP_REP_bank_months_count). The results are
similar for both training and validating data.

2. Cap and Floor-Having treated missings, we needed to adjust the outliers in the dataset.
We added a replacement node to cap and floor the extreme values.

Results referred to below after running Cap & Floor:

23

There have been multiple replacements in the overall dataset. For instance, customer age had
45 replacements in train data and 41 in validation data. The previous maximum age was 90
years old (refer to StatExplore in Data Exploration). Now the upper limit is 76.097 (screenshot
below):

The following screenshot is a consolidated list of all the upper and lower limits for each variable.
The range between the limits is quite vast in terms of magnitude. There are chances of skews
sustaining.

24

3. Transform Skews-The initial skews for the inputs were as high as 9 whereas it should be
between -1 to 1.

The skews below show the before of transformation. Most of the variables are skewed
positively. Three of the highly skewed variables are:

● REP_IMP_REP device_distinct_email- 3.9.
● REP_bank_branch_count_8w-3.15
● REP_REP_days_since_request -2.95

25

We edited the variables with the highest skews with a log transformation. In the variables edit
panel, we opened the interval variables and chose ‘log’ instead of ‘default’ to minimize skew. We
changed 6 variables. The variables are given below:

After transforming variables, the skews are as follows:

26

Most of the skews have reduced and come inside the acceptable range of -1 to 1. There are
only 2 variables where skews still persist, device_distinct_email and days_since_request. Both
are around 2 which is still an improvement over the pre-transform state. After careful
consideration, we have decided to leave these 2 variables as is.

4. Recode Class Variables-All the transformations done so far mostly impacted interval
variables. In the case of class variables, we wanted to recode some class variables. We
were given limited options in the dataset. The only options which made sense were:

● Employment status
● Housing status
● Payment type
● Income

The first 3 options on paper seem feasible, however, the data dictionary did not suffice. Very
little clarity was provided on the acronyms, hence, we did not have a basis to group the classes.
Income was naturally the only variable we decided to recode. Classes ranged from 0.1 to 0.9.
We divided the data into 3 classes and took the mean for each class and denoted the class with
the mean value. For example, 0.1, 0.2, and 0.3 all were classed as 0.2. Due to SAS limitations,
we could not assign the degree of income in terms of ‘High’, ‘Med’, and ‘Low’, though it would
have been ideal.

27

Regressions

For our model, we have chosen logistic regression for the analysis.
Logistic regression uses previous observations from a data set to predict a binary
outcome, such as yes or no. By examining the correlation between one or more already
present independent variables, a logistic regression model forecasts a dependent data
variable.

We have used 4 types of regression i.e.,
● Full Regression
● Forward Regression
● Backward Regression
● Stepwise Regression
● Polynomial Regression

28

Full Regression
We first conducted a full regression of our model. As per the screenshot it can be depicted that
the ASE of full regression is 0.141961.

29

As per the odds ratio, REP_LOG_REP_IMP_REP_device_disti is 15.692 times related to bank
fraud and M_REP_velocity_6h is 4.572 times related to bank fraud.

Forward Regression
For forward regression, we changed the model selection to forward and the selection criteria are
Validation error.

As per the forward regression model, our ASE is 0.141946 which is slightly better than full
regression.

30

As per our output window, REP_LOG_REP_IMP_REP_device_disti is 14.137 times related to
bank fraud and has_other_cards is 3.473 times related to bank fraud.

Backward Regression
For backward regression we changed the model selection to backward and the selection criteria
is Validation error.

31

As per backward regression model, our ASE is 0.141983 which is worse than full and forward
regression.

As per our odds ratio in the output window REP_LOG_REP_IMP_REP_device_disti is 14.183
times related to bank fraud and has_other_cards is 3.471 times related to bank fraud.
This can be seen in the screenshot attached below.

32

Stepwise regression
For stepwise regression, we changed the model selection to stepwise and the selection criteria
is Validation error.

33

As per stepwise regression model our ASE is 0.141946 which is same as forward regression.

As per our output window, REP_LOG_REP_IMP_REP_device_disti is 14.137 times related to
bank fraud and has_other_cards is 3.473 times related to bank fraud, which is same as forward
regression.

34

Polynomial regression
For stepwise regression we didn’t change any model selection and the selection criteria but
instead we made changes in the equation tab.

As per polynomial regression model, our ASE is 0.14156 which is best amongst all the
regression models.

35

Neural Networks

A neural network is a collection of linked input-output variables, where each link has a certain
weight that affects the result. The input variables for neural networks are linear combinations of
nonlinear functions. This methodology is strong as well as very generic for both regression and
classification, and it has been proven to be the most effective machine learning technique for a
variety of issues.

We attached neural nodes to 5 sections:
● Decision Trees NN
● Forward Regression NN
● Polynomial Regression NN
● Data Manipulation NN
● Additional NN

36

Decision Trees Neural Networks

We attached Neural Nodes to our optimal trees to experiment if the error rates get better or not.
We kept the number of iterations at 100, and then turned off any preliminary training.
Furthermore, we kept the number of hidden units at the default setting which is three.

Screenshot of our NNs attached to optimal trees is given below:

ASE Neural Network

The below screenshot shows the results we derived from the ASE neural network node. As per
the iteration plot, 27 iterations is the best cut-off point as per average squared error metric.

37

The average square error for ASE Neural network is 0.184877 which is worse than ASE tree
with 0.170573 error rate. Hence, this Neural node did not add to ASE tree’s efficiency.

Misclassification Neural Network

The below screenshot shows the results we derived from the Misclassification neural network
node. Unlike, ASE NN , we achieved an iteration cut-off at 18 as per average squared error
metric.

The average square error for Misclassification Neural network is 0.274552 which is highest
among all three networks which is much worse than Misclassification Tree at 0.175272 error
rate.

38

ASE 3B Neural Network

The number of suggested iterations for this model is an astonishing 96. This is the highest so far
for NNs.

However, the average square error for ASE 3B Neural network is 0.182003 which is lowest
among all three nodes. In comparison to ASE 3B Tree, it is much higher, approximately by 0.01.

39

Summary: Decision Tree NN

Model ASE NN Misclassification NN ASE 3Branch NN

Average Squared Error 0.184877 0.274552 0.182003

Misclassification Rate 0.335449 0.483772 0.33146

Forward Regression Neural Networks

Here we connect the neural network with the forward regression with various hidden units and
iterations. This has been done as one of the last steps in our project. We attached NNs with
multiple hidden units to find increasing or decresing efficiency. We started with the default
setting of 3 and went upwards. We experimented till the point efficiency started faltering.

40

3 Hidden Unit Neural Network (100 iterations)

The average square error of a neural network with 3 hidden unit and 100 iterations is 0.139412
with cut-off iterations at 84. Compared to Forward Regression, the error rate has improved from
0.141936

41

4 Hidden Unit Neural Network (100 iterations)

With the hypothesis of improving reliability we kept on increasing hidden units, we approached 4
hidden units. The average square error of a neural network with 4 hidden unit and 100 iterations
is 0.139902 which is slightly lower than 3 hidden unit neural network..

42

5 Hidden Unit Neural Network (100 iterations)

Following the trend of increasing error rates, we went ahead with 5 hidden units. The average
square error of a neural network with 5 hidden unit and 100 iterations is 0.139861 which is
lowest so far. The sequence of improving rates keeps going on.

43

6 Hidden Unit Neural Network (100 iterations)

The average square error of a neural network with 6 hidden unit and 100 iterations is 0.140261
which is increasing from the prior hidden unit models. Hence, we stopped here in terms of
experimenting with hidden units.

44

Polynomial Regression Neural Networks

We did a polynomial regression to cater to the skews which were persistent in our project
despite all the changes made through the replacement and transform nodes. Last step taken
was changing 6 variables to their log format instead of default. After which all changes were
made to class variables.

45

In the case of experimentation with hidden units, we used the same rationale as before.
Exercise testing as long as efficiency is being achieved. In short, we used upto 6 hidden units
and stopped there due to increasing error rates. Screenshots are shared below for each
specification.

3 Hidden Unit Neural Network (100 iterations)

The ASE rate for default 3 hidden units was 0.139752. The number of iterations suggested were
36. This error rate is lower than the polynomial regression rate of 0.141826.

46

4 Hidden Unit Neural Network (100 iterations)
The average square error of a neural network with 4 hidden unit and 100 iterations is 0.140691.

47

48

5 Hidden Unit Neural Network (100 iterations)

The average square error of a neural network with 5 hidden unit and 100 iterations is 0.139567

6 Hidden Unit Neural Network (100 iterations)
The average square error of a neural network with 6 hidden unit and 100 iterations is 0.140382

49

50

Data Modification Neural Network

Impute Neural Network

After imputing missing values in our dataset, we attach a Neural Network node to see if imputing
the missing values increases the accuracy of our models.

The validation average square error of the impute NN node is 0.138197 and the number of
iterations suggested from this model is 82. The ASE we derived from this node is by far one of
the best models so far. The closest model that achieved an error rate close to this was the ASE
3 branch model with an ASE of 0.169517. So the accuracy is significantly better.

51

Cap and Floor Neural Network

After imputing all the missing variables, we added a replacement node to adjust the outliers of
the dataset. Cap and Floor suggest the range of values that will be capped or floored by this
node. Having run this node, we connected the neural network and below is the screenshot of
the results panel.

The average square error of the Cap & Floor NN node is 0.137973 and number of iterations is
94. This model has beat the previous Impute NN node by a few decimals only.

52

Transform Neural Network

After applying log transformation to the skews in our dataset, we connect the neural network
with the Transform Skews node and below is the screenshot.

The average square error of the Transform NN node is 0.140211. This however has lower
accuracy than the Cap and Floor NN and Impute NN.

53

Recode Class Neural Network

We connect the neural network with the Record Class node as the step of last data
manipulation. Screenshot referred below:

The average square error of the Recode NN node is 0.139593. As it seems, from the data
manipulation section Cap and Floor NN and Impute NN are the best models so far.

54

Other Neural Networks
Besides these neural networks, we also worked on a few more NNs which were extrapolated
before any data modification in the interval and class variables. Snapshot below:

However, post consultation we decided to work with regressions which were derived from our
treat data. Though the untreated data gave us better ASE in general across different model
types, after careful consideration we proceeded with data which were more fit.

55

Model Comparison

In order to devise the best model, we created 23+ different models which we ran throughout this
entire project. The Model Comparison node in SAS Enterprise Miner helps us compare the
statistics for all 23+ models in one panel. A screenshot of the summary statistics for each model
is given below:

From the statistics we can come to the conclusion that Cap and Floor NN is the best model. It
has the lowest Average Squared Error at 0.137973 and 0.196283 Misclassification Rate. Cap
and Floor was the second modification in all the data modifications we have done. None of the
skews were adjusted in this model. Despite the adjustments, Cap and Floor NN is the best
model.

Using the ROC index and Gini coefficient from the screenshot below, we confirm that Cap and
Floor NN is indeed the best model. The highest ROC and Gini are preferred. Cap and Floor NN
have a ROC index of 0.883 and a Gini coefficient of 0.766. Interestingly, Cap & Floor NN is tied
with Impute NN in terms of just the area under the curve. But takes precedence in terms of error
rate.

56

As seen in the picture above, Cap & Floor NN and Impute NN have the exact same ROC curve
across all levels of specificity. It is difficult to make any distinction between the two. However,

57

their error rates are different only by 0.000224 (0.138197-0.137973). Though negligible in most
scenarios, in the case of modeling lower error rate gets higher priority.

Neural Networks(NN) have their own logic in deriving the best model, and one of the biggest
disadvantages of these types of models is that the interpretation of data is next to impossible.
However, we can analyze the fundamentals of this model to get an idea as to why we received
the best model without significant modification of the dataset. Through all the adjustments made
in our model, we were trying to fit our model. The more we tried to fit, the further we strayed
from the truth of the dataset. Neural Network is a robust model mechanism that can work with all
variables to create a relation. In this case, NN turned out to be the best model to use.

As a matter of fact, all the top 12 models are NNs. The 2nd best is Impute NN which we
discussed. The 3rd best model is a 3-hidden unit NN attached to a Forward regression with an
ASE of 0.139412 and a Misclassification rate of 0.197915.

Recommendations and Key Findings

Models to Use

Upon evaluating the performance of all the models, we have determined that the Cap and Floor
Neural Network is the most accurate at predicting fraudulent bank account applications. This
was determined by evaluating average squared error, the ROC index, and Gini coefficient. We
recommend that the bank implement the Cap and Floor Neural Network to identify and flag
potentially fraudulent account applications.

Key Features

The following table outlines some of the selected key features that were identified to be
important for predicting fraudulent applications by three models of varying types: 3 Branch
Decision Tree, Forward Logistic Regression, and Cap and Floor Neural Network.

Decision Tree Logistic Regression Odds
Ratios

Neural Network Weights

Housing Status Device Distinct Emails Current Address Months
Count

58

Device OS Has Other Cards Velocity_4w

Has Other Cards Device OS Device Distinct Emails

Keep Alive Session Keep Alive Session

Housing Status

Payment Type

Features to monitor

Based on our analysis, the key features that seem to be the most predictive of bank account
fraud are housing status, device OS, whether the applicant has other cards, keep alive session,
and payment type. Our models, including decision trees, logistic regressions, and neural
networks, all identified these variables as predictors of fraud. Additionally, our neural network
weights and decision tree splits suggest that current address months count, Velocity_4w, and
Device Distinct Emails are also important in predicting fraud.

Applications that are most likely to be fraudulent are ones where the applicant does not have
any other cards with the bank and has not been living in their current address for very long, with
a current housing status of BA. Additional indicators are the applicant paying by payment type
AC and choosing not to keep the browser session alive on logout. A high number of applications
using different email addresses from the same device, and submitted at a time with a high
velocity of applications are also more likely to be fraudulent.

The presence of these features increases the likelihood of an application being fraudulent. As
such, banks should scrutinize such applications that contain any or all of these features during
the account approval process in order to flag potentially fraudulent account applications for
further investigation.

Finally, since the dataset contains anonymized values which cannot be interpreted without
knowing their meaning, such as payment type, housing status, and employment status etc. It is
recommended that the bank investigate the anonymized values to gain a clearer understanding
of the features of fraudulent applications. Understanding the meaning of these variables and
how they can be used to identify fraudulent applications may help banks more effectively detect
and prevent fraud.

59

Conclusion
In conclusion, our project aimed to identify key features of fraudulent bank account applications
and to train machine learning models that can accurately predict fraudulent applications. After
oversampling, data partition, and treating the missing and skewed data, we trained decision
trees, logistic regressions, and neural network models to predict fraudulent applications.

The result of our modeling showed that housing status, device OS, device distinct emails, and
presence of other cards were key variables in predicting fraudulent applications. Based on our
findings, we recommend that the bank consider the identified key features when evaluating new
account applications, and use the Cap & Floor Neural Network for most accurate predictions. By
implementing these recommendations, the bank will be better equipped to identify and prevent
fraudulent account openings.

60

References
1. 5 types of bank account fraud – and how to prevent them. SEON. (2022, December 7).

Retrieved December 15, 2022, from https://seon.io/resources/bank-account-fraud/
2. New account fraud. OneSpan. (n.d.). Retrieved December 18, 2022, from

https://www.onespan.com/topics/new-account-fraud

61

Appendix

Full Model Screenshot

